Epigenetic treatment in mice improves spine

Epigenetic treatment in mice improves spinal cord regeneration after injury

Image: Shown is an increased density of synapses (green) that contact motoneurons (purple) in the spinal cord of an injured animal after treatment with the small molecule TTK21- These are important for motor function.
vision Lake

Credit: Franziska Mueller (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

Currently, spinal cord injuries have no effective treatments; physical rehabilitation can help patients regain some mobility, but for severe cases the results are extremely limited due to the failure of spinal neurons to regenerate naturally after injury. However, in a study published Sept. 20,e in the open access journal PLOS Biologyresearchers led by Simone Di Giovanni of Imperial College London in the UK show that weekly treatments with an epigenetic activator can aid the regrowth of sensory and motor neurons in the spinal cord when given to mice 12 weeks after severe injury.

Building on their past success, researchers used a small molecule called TTK21 to activate genetic programming that induces axon regeneration in neurons. TTK21 alters the epigenetic state of genes by activating the CBP/p300 family of coactivator proteins. They tested the TTK21 treatment in a mouse model of severe spinal cord injury. The mice lived in an enriched environment that allowed them to be physically active, as is encouraged in human patients.

Treatment started 12 weeks after severe spinal cord injury and lasted 10 weeks. Researchers found several improvements after TTK21 treatment compared to control treatment. The most notable effect was that more axons grew in the spinal cord. They also found that the retraction of motor axons stopped above the point of injury and that the growth of the sensory axons increased. These changes were likely due to the observed increase in gene expression related to regeneration. The next step will be to amplify these effects even more and activate the regenerating axons to reconnect with the rest of the nervous system so that animals can regain their ability to move easily.

Di Giovanni adds: “This work shows that a drug called TTK21 administered systemically once a week after a chronic spinal cord injury (SCI) in animals can promote neuronal regrowth and an increase in synapses needed for neuronal transmission. This is important because chronic spinal cord injury is a non-curable condition in which neuronal regrowth and repair fail.We are now investigating the combination of this drug with spinal cord gap bridging strategies, such as biomaterials, as possible ways to improve disability in SCI patients .”


Use this URL in your messaging to access the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001310

Quote: Müller F, De Virgiliis F, Kong G, Zhou L, Serger E, Chadwick J, et al. (2022) CBP/p300 activation promotes axon growth, germination and synaptic plasticity in chronic experimental spinal cord injury with severe disability. PLoS Biol 20(9): e3001310. https://doi.org/10.1371/journal.pbio.3001310

Author Countries: United Kingdom, India

Financing: ISRT Translational Prize-P90397 to SDG Marina Romoli Onlus-P82836 to SDG Rosetrees Trust-P72986 to SDG Brain Research Trust-P73576 to SDG The funders had no role in the study design, data collection and analysis, decision to publishing or preparing the manuscript.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of any press releases posted on EurekAlert! by sponsoring institutions or for the use of information through the EurekAlert system.

Leave a Comment